THE $\rho(770)$

Updated April 2008 by S. Eidelman (Novosibirsk).

The determination of the parameters of the $\rho(770)$ is beset with many difficulties because of its large width. In physical region fits, the line shape does not correspond to a relativistic Breit-Wigner function with a P-wave width, but requires some additional shape parameter. This dependence on parameterization was demonstrated long ago by PISUT 68. Bose-Einstein correlations are another source of shifts in the $\rho(770)$ line shape, particularly in multiparticle final state systems (LAFFERTY 93).

The same model dependence afflicts any other source of resonance parameters, such as the energy dependence of the phase shift δ_1^1 , or the pole position. It is, therefore, not surprising that a study of $\rho(770)$ dominance in the decays of the η and η' reveals the need for specific dynamical effects, in addition to the $\rho(770)$ pole (ABELE 97B, BENAYOUN 03B).

The cleanest determination of the $\rho(770)$ mass and width comes from the e^+e^- annihilation and τ -lepton decays. BARA-TE 97M showed that the charged $\rho(770)$ parameters measured from τ -lepton decays are consistent with those of the neutral one determined from e^+e^- data of BARKOV 85. This conclusion is qualitatively supported by the high statistics study of ANDERSON 00A. However, model-independent comparison of the two-pion mass spectrum in τ decays and the $e^+e^- \to \pi^+\pi^$ cross section gave indications of discrepancies between the overall normalization: τ data are about 3% higher than e^+e^- data (ANDERSON 00A, EIDELMAN 99). A detailed analysis using such two-pion mass spectra from τ decays measured by OPAL (ACKERSTAFF 99F), CLEO (ANDERSON 00A) and ALEPH (DAVIER 03A, SCHAEL 05C) as well as recent pion form factor measurements in e^+e^- annihilation by CMD-2 (AKHMETSHIN 02, AKHMETSHIN 04) showed that the discrepancy can be as high as 10% above the ρ meson (DAVIER 03, DAVIER 03B). This discrepancy retains after recent measurements of the twopion cross section in e^+e^- annihilation at KLOE (ALOISIO 05) and SND (ACHASOV 05A, ACHASOV 06). This effect is not accounted for by isospin breaking (ALEMANY 98, CZYZ 01,

June 6, 2008 13:37

CIRIGLIANO 01, CIRIGLIANO 02), but the accuracy of its calculation may be overestimated (MALTMAN 06). GHOZZI 04 suggested that this effect can be explained if the charged ρ mass were higher than that of the neutral one by a few MeV. Existing theoretical models of the possible mass difference predict either a much smaller value (BIJNENS 96) or a heavier neutral ρ meson (ACHASOV 99F). Experimental accuracy is not yet sufficient for unambiguous conclusions. The size of the effect is also sensitive to the possible width difference (SANCHEZ 07, FLOREZ-BAEZ 07). Recently BENAYOUN 08 performed a detailed analysis of the whole set of the ρ , ω and ϕ decays consistently taking into account mixing effects in the hidden local symmetry model and claimed that in this approach τ decays to two pions can be naturally accounted for.